MEMORIAL DES	SCRITIVO E DE CALO ENROC	CULO PARA DIMEN CAMENTO	NSIONAMENTO DE
MEMORIAL DES			NSIONAMENTO DE

Sidrolândia pertence à Bacia Hidrográfica do Paraguai, sub-bacia dos Rios Aquidauana/Miranda e Bacia do Paraná, sub-bacia do Rio Ivinhema e Rio Pardo. Os principais rios são: Rio Anhanduí, Rio Vacaria, Rio Serrote e Rio Brilhante. Conta com grande quantidade de nascentes no território e seus limites com outros municípios são marcados por cursos d'água.

1. SITUAÇÃO ATUAL:

Atualmente a contribuição despejada a margem da rodovia, já é previamente dimensionada e implantada pela obra executada da Rodovia MS 162

Inicialmente se faz necessário o caudal de projeto, sendo ele o mesmo despejado pelo projeto de dimensionamento de drenagem da MS 162, comprimento do Talvegue: 440 metros.

2. DIMENSIONAMENTO

2.1. Intensidade de Chuvas Críticas

 $i = ((1681,8*(Tr^0,199))/((t+16)^0,916))$

	PARA 1	100 ANOS			
258	8.60	mm/h	5	min	
212	2.65	mm/h	10	min	
18 ⁻	1.00	mm/h	15	min	
157	7.83	mm/h	20	min	
140	0.11	mm/h	25	min	
120	6.09	mm/h	30	min	
79	0.61	mm/h	60	min	•

2.2. Tempo de Concentração

 $Tc = 57*(((L^3)/\Delta h))^0,385)$

Comprimento do Talvegue - 1 4.4 Km Canaleta Rodovia

Diferença de cota $\Delta h = 468-466.75$ $\Delta h = 1.25 \text{ m}$

Tc1 = 35.59 min

 $\Sigma Tc = 35.59 \text{ min}$

Adotar 60 min

2.3. Vazões

Q = ((C*i*A)/(360))

Área drenada (A) Coef. Runnoff © Intensidade (i)	= = =	0.22 0.8 79.6066	há mm/s
Q=	=	0.04	m³/s

2.4. Vazão de Sarjeta (Q₀)

 $Q_0 = 0.375^*(Z/n)^*(i^{(1/2)})^*(y_0^{(8/3)})$

Inv. Declividade (Z)	=	4.62	
Manning (n)	=	0.017	
Altura lam. D'água (y₀)	=	0.13	m
Larg. Esp.D'água	=	0.60	m
Declividade (i)	=	0.010	m/m

 $Q_0 = 0.0442 \text{ m}^3/\text{s}$

2.5. Dimensionamento Hidráulico

Diâmetro Ramais	=	0.8	m
Diâmetro Boca de lobo	=	0.4	m
declividade mínima	=	0.010	m/m
Velocidade	=	0,8 a 4,0	m/s
Manning tubo concreto	=	0.015	
área molhada	=	0.35168	m²
perímetro molhado	=	3.517	m
Raio Hidráulico	=	0.100	m

TRECHO	COTA DO	TERRENO	(L)	dec. (i)	ÁREA (ha)	tc	F	int	С	Q (m3/s)	D (m)	dec. (i %)	V (m/s)	Q (m3/s)
	(montante)	(jusante)	(m)	(%)	(trecho)	(minutos)	(anos)	(mm/min)	(run off)	(prevista)	(diâmetro)	(corrigida)	(velocidade)	(calculada)
1A	468.000	466.750	440.00	0.28	0.22	16.03	10	53.38	0.8	0.03	0.80	0.28	1.22	0.61

Logo a vazão de projeto para micro-bacia de contribuição Q = 0,61 m³/s

2.6. Comprimento Do Tapete De Enrocamento

O comprimento de enrocamento define a extensão de proteção necessária para dissipar a velocidade do escoamento, este tapete deverá ser colocado desde a saída da passagem hidráulica até determinado ponto. Poderá ser determinado considerando o diâmetro do aqueduto, o caudal de projeto e a velocidade de escoamento.

Quando altura de água a jusante for considerada alta, o comprimento do tapete é obtido pela seguinte expressão:

 $L_T = 3D (Q/(W0*D^0,5))$

LT - Comprimento do tapete de enrocamento (m)

Q- Caudal de projeto (m³/s)

W₀ – Largura máxima da passagem hidráulica

D – Altura máxima da passagem hidráulica

Logo:

 $L_T = 3*0.80*(0.61 \text{ m}^3/\text{s}/(2*0.80^0.5))$

 $L_T = 2.046$

Considerando duas linhas de tubo:

2,046 * 2 = 4,92m

Logo, pelo IEP, recomenda-se que o comprimento do tapete do enrocamento seja obtido em função do diâmetro e da velocidade de escoamento a saída da passagem hidráulica, conforme quadra a seguir:

Diâmetro do aqueduto	L _T (m)						
(m)	V _o < 2,5 (m/s)	2,5 < V _o < 3,5 (m/s)	3,5 < V _o < 4,5 (m/s)				
0,60	2,0	2,5	3,0				
0,80	2,5	3,0	3,5				
1,00	3,0	3,5	4,0				
1,20	3,5	4,0	4,5				
1,50	4,0	4,5	5,0				

Ou conforme indicado pelo IEP, 2.5*2 = 5m

2.6. Largura Do Tapete De Enrocamento

O canal natural a jusante de uma passagem hidráulica, onde será realizada a descarga do escoamento, pode apresentar-se de duas formas diferentes. Por um lado pode ser uma zona plana onde não existe um canal bem definido e por outro lado pode apresentar-se bastante bem definido. A largura do tapete de enrocamento é definida de acordo com esta classificação. Se a zona a jusante da passagem hidráulica for constituída por um canal bem definido, o tapete de enrocamento deverá estender-se em toda a largura do canal natural e até uma altura de aproximadamente 0,30 m acima da altura máxima de água a jusante ou até ao topo da margem do canal, prevalecendo o menor valor. As paredes laterais do canal não devem ter uma inclinação superior a 2:1. Se a zona a jusante da passagem hidráulica não tiver um canal bem definido a altura de água a jusante influencia a largura e a configuração do tapete de enrocamento.

WT = D + LT

Onde:

WT – Largura do tapete de enrocamento

D – Diâmetro de passagem hidráulica

LT – Comprimento do tapete de enrocamento

Logo:

WT = (0.80*2) + 5

WT = 6,6m

2.7. Espessura Da Camada

Para determinação de espessura de camada estima-se o mínimo em que deva ser determinada de acordo com o tamanho dos blocos de enrocamento. Para D50 menores ou iguais a 0,40 m é recomendado que a espessura seja de acordo com expressão:

Et = 1,2D Onde:

Et = 1,2*0,80

Et = 0.96m

3. Considerações Finais

Considerando que no local o desague trata-se de uma consequência de drenagem da Rodovia MS-162, a solução apresentada é afim de amortizar o assoreamento de terrenos lindeiros a intervenção, o qual por sua vez já apresenta um leito de escoamento bem delimitado. Considerando o indicado por literaturas, o dimensionamento a ser feito é seguir o leito existente, até o desague amortizado obedecendo declive do terreno. Por fim a dimensão da obra fica adenda ao projeto em prancha apresentado.

ENGENHEIRO CIVIL CREA: 086721-0